Human cytochrome p450 inhibition and metabolic-intermediate complex formation by goldenseal extract and its methylenedioxyphenyl components.
نویسندگان
چکیده
The concurrent use of herbal medicinals with prescription and over-the-counter drugs carries a risk for unanticipated adverse drug-botanical pharmacokinetic interactions, particularly as a result of cytochrome P450 (P450) inhibition. Extracts of goldenseal (Hydrastis canadensis) containing approximately equal concentrations ( approximately 17 mM) of two methylenedioxyphenyl alkaloids, berberine and hydrastine, inhibited with increasing potency (CYP2C9) diclofenac 4'-hydroxylation, (CYP2D6) bufuralol 1'-hydroxylation, and (CYP3A4) testosterone 6beta-hydroxylation activities in human hepatic microsomes. The inhibition of testosterone 6beta-hydroxylation activity was noncompetitive with an apparent Ki of 0.11% extract. Of the methylenedioxyphenyl alkaloids, berberine (IC50 = 45 microM) was the more inhibitory toward bufuralol 1'-hydroxylation and hydrastine (IC50 approximately 350 microM for both isomers), toward diclofenac 4'-hydroxylation. For testosterone 6beta-hydroxylation, berberine was the least inhibitory component (IC50 approximately 400 microM). Hydrastine inhibited testosterone 6beta-hydroxylation with IC50 values for the (+)- and (-)-isomers of 25 and 30 microM, respectively. For (-)-hydrastine, an apparent Ki value of 18 microM without preincubation and an NADPH-dependent mechanism-based inhibition with a kinactivation of 0.23 min(-1) and a KI of approximately 110 microM were determined. Cytochrome P450 metabolic-intermediate (MI) complex formation could be demonstrated for both hydrastine isomers. With expressed P450 isoforms, hydrastine formed a P450 MI complex with CYP2C9, CYP2D6, and CYP3A4. Coexpression of cytochrome b5 with the P450 isoforms enhanced the rate but not the extent of P450 MI complex formation.
منابع مشابه
Inhibition of human cytochrome P450 activities by kava extract and kavalactones.
The herb kava has recently been associated with numerous drug interactions, but its interaction with cytochrome P450 (P450) enzymes has not been investigated. In the present work the inhibition of P450 enzymes by kava extract and individual kavalactones in human liver microsomes (HLMs) was investigated. Whole kava extract (normalized to 100 microM total kavalactones) caused concentration-depend...
متن کاملShort Communication INHIBITION OF HUMAN CYTOCHROME P450 ACTIVITIES BY KAVA EXTRACT AND KAVALACTONES
The herb kava has recently been associated with numerous drug interactions, but its interaction with cytochrome P450 (P450) enzymes has not been investigated. In the present work the inhibition of P450 enzymes by kava extract and individual kavalactones in human liver microsomes (HLMs) was investigated. Whole kava extract (normalized to 100 M total kavalactones) caused concentration-dependent d...
متن کاملShort Communication INHIBITION OF HUMAN CYTOCHROME P450 ACTIVITIES BY KAVA EXTRACT AND KAVALACTONES
The herb kava has recently been associated with numerous drug interactions, but its interaction with cytochrome P450 (P450) enzymes has not been investigated. In the present work the inhibition of P450 enzymes by kava extract and individual kavalactones in human liver microsomes (HLMs) was investigated. Whole kava extract (normalized to 100 M total kavalactones) caused concentration-dependent d...
متن کاملPhenotyping studies to assess the effects of phytopharmaceuticals on in vivo activity of main human cytochrome p450 enzymes.
The extensive use of herbal drugs and their multiple components and modes of action suggests that they may also cause drug interactions by changing the activity of human cytochrome P450 enzymes. The purpose of the present review is to present the available data for the top 14 herbal drug sales in the U. S. Studies describing the effects of herbal drugs on phenotyping substrates for individual C...
متن کاملInfluence of sesamin on CYP2C-mediated diclofenac metabolism: in vitro and in vivo analysis
Our previous studies revealed that sesamin caused a mechanism-based inhibition (MBI) of CYP2C9 in human liver microsomes. Additionally, we observed a similar MBI of CYP2C by sesamin in the rat liver microsomes. Sesamin-induced difference spectra of rat or human liver microsomes in the presence of NADPH showed a peak at 459 nm, suggesting the formation of a metabolic-intermediate (MI) complex of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 31 11 شماره
صفحات -
تاریخ انتشار 2003